PPT-On the computational efficiency of training neural network
Author : mojartd | Published Date : 2020-08-29
Roi Livni Shai ShalevShwartz Ohad Shamir Remainder on neural networks Neural network A direct graph usually acyclic where each vertex corresponds to a neuron
Presentation Embed Code
Download Presentation
Download Presentation The PPT/PDF document "On the computational efficiency of train..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
On the computational efficiency of training neural network: Transcript
Roi Livni Shai ShalevShwartz Ohad Shamir Remainder on neural networks Neural network A direct graph usually acyclic where each vertex corresponds to a neuron A Neuron A weighted sum of its predecessor neurons activation function . Kong Da, Xueyu Lei & Paul McKay. Digit Recognition. Convolutional Neural Network. Inspired by the visual cortex. Our example: Handwritten digit recognition. Reference: . LeCun. et al. . Back propagation Applied to Handwritten Zip Code Recognition. 1. Recurrent Networks. Some problems require previous history/context in order to be able to give proper output (speech recognition, stock forecasting, target tracking, etc.. One way to do that is to just provide all the necessary context in one "snap-shot" and use standard learning. of Poker AI. Christopher Kramer. Outline of Information. The Challenge. Application, problem to be solved, motivation. Why create a poker machine with ANNE?. The Flop. The hypothesis. Can a Poker AI run using only an ANNE?. 2015/10/02. 陳柏任. Outline. Neural Networks. Convolutional Neural Networks. Some famous CNN structure. Applications. Toolkit. Conclusion. Reference. 2. Outline. Neural Networks. Convolutional Neural Networks. By, . . Sruthi. . Moola. Convolution. . Convolution is a common image processing technique that changes the intensities of a pixel to reflect the intensities of the surrounding pixels. A common use of convolution is to create image filters. Nitish Gupta, Shreya Rajpal. 25. th. April, 2017. 1. Story Comprehension. 2. Joe went to the kitchen. Fred went to the kitchen. Joe picked up the milk. Joe travelled to his office. Joe left the milk. Joe went to the bathroom. . Abhishek Narwekar, Anusri Pampari. CS 598: Deep Learning and Recognition, Fall 2016. Lecture Outline. Introduction. Learning Long Term Dependencies. Regularization. Visualization for RNNs. Section 1: Introduction. Rohit. Ray. ESE 251. What are Artificial Neural Networks?. ANN are inspired by models of the biological nervous systems such as the brain. Novel structure by which to process information. Number of highly interconnected processing elements (neurons) working in unison to solve specific problems.. . Rekabdar. Biological Neuron:. The Elementary Processing Unit of the Brain. Biological Neuron:. A Generic Structure. Dendrite. Soma. Synapse. Axon. Axon Terminal. Biological Neuron – Computational Intelligence Approach:. Ali Cole. Charly. . Mccown. Madison . Kutchey. Xavier . henes. Definition. A directed network based on the structure of connections within an organism's brain. Many inputs and only a couple outputs. Daniel Boonzaaier. Supervisor – Adiel Ismail. April 2017. Content. Project Overview. Checkers – the board game. Background on Neural Networks. Neural Network applied to Checkers. Requirements. Project Plan. Dr. Abdul Basit. Lecture No. 1. Course . Contents. Introduction and Review. Learning Processes. Single & Multi-layer . Perceptrons. Radial Basis Function Networks. Support Vector and Committee Machines. Goals for this Unit. Basic. understanding of Neural Networks and how they work. Ability to use Neural Networks to solve real problems. Understand when neural networks may be most appropriate. Understand the strengths and weaknesses of neural network models. Learn to build neural network from scratch.. Focus on multi-level feedforward neural networks (multi-level . perceptrons. ). Training large neural networks is one of the most important workload in large scale parallel and distributed systems.
Download Document
Here is the link to download the presentation.
"On the computational efficiency of training neural network"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.
Related Documents